\(\int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx\) [172]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 146 \[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\frac {5 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {7 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d}-\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}}+\frac {2 A \sin (c+d x)}{a d \sqrt {a-a \sec (c+d x)}} \]

[Out]

5*A*arctan(a^(1/2)*tan(d*x+c)/(a-a*sec(d*x+c))^(1/2))/a^(3/2)/d-A*sin(d*x+c)/d/(a-a*sec(d*x+c))^(3/2)-7/2*A*ar
ctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a-a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+2*A*sin(d*x+c)/a/d/(a-a*sec(d*x+
c))^(1/2)

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {4105, 4107, 4005, 3859, 209, 3880} \[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\frac {5 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {7 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d}+\frac {2 A \sin (c+d x)}{a d \sqrt {a-a \sec (c+d x)}}-\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}} \]

[In]

Int[(Cos[c + d*x]*(A + A*Sec[c + d*x]))/(a - a*Sec[c + d*x])^(3/2),x]

[Out]

(5*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a - a*Sec[c + d*x]]])/(a^(3/2)*d) - (7*A*ArcTan[(Sqrt[a]*Tan[c + d*x])
/(Sqrt[2]*Sqrt[a - a*Sec[c + d*x]])])/(Sqrt[2]*a^(3/2)*d) - (A*Sin[c + d*x])/(d*(a - a*Sec[c + d*x])^(3/2)) +
(2*A*Sin[c + d*x])/(a*d*Sqrt[a - a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}}+\frac {\int \frac {\cos (c+d x) (4 a A+3 a A \sec (c+d x))}{\sqrt {a-a \sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}}+\frac {2 A \sin (c+d x)}{a d \sqrt {a-a \sec (c+d x)}}-\frac {\int \frac {-5 a^2 A-2 a^2 A \sec (c+d x)}{\sqrt {a-a \sec (c+d x)}} \, dx}{2 a^3} \\ & = -\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}}+\frac {2 A \sin (c+d x)}{a d \sqrt {a-a \sec (c+d x)}}+\frac {(5 A) \int \sqrt {a-a \sec (c+d x)} \, dx}{2 a^2}+\frac {(7 A) \int \frac {\sec (c+d x)}{\sqrt {a-a \sec (c+d x)}} \, dx}{2 a} \\ & = -\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}}+\frac {2 A \sin (c+d x)}{a d \sqrt {a-a \sec (c+d x)}}+\frac {(5 A) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,\frac {a \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{a d}-\frac {(7 A) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,\frac {a \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{a d} \\ & = \frac {5 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {7 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d}-\frac {A \sin (c+d x)}{d (a-a \sec (c+d x))^{3/2}}+\frac {2 A \sin (c+d x)}{a d \sqrt {a-a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.92 \[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\frac {A \left (10 \text {arctanh}\left (\sqrt {1+\sec (c+d x)}\right ) (-1+\sec (c+d x))-7 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1+\sec (c+d x)}}{\sqrt {2}}\right ) (-1+\sec (c+d x))-2 (-2+\cos (c+d x)) \sqrt {1+\sec (c+d x)}\right ) \tan (c+d x)}{2 a d (-1+\sec (c+d x)) \sqrt {1+\sec (c+d x)} \sqrt {a-a \sec (c+d x)}} \]

[In]

Integrate[(Cos[c + d*x]*(A + A*Sec[c + d*x]))/(a - a*Sec[c + d*x])^(3/2),x]

[Out]

(A*(10*ArcTanh[Sqrt[1 + Sec[c + d*x]]]*(-1 + Sec[c + d*x]) - 7*Sqrt[2]*ArcTanh[Sqrt[1 + Sec[c + d*x]]/Sqrt[2]]
*(-1 + Sec[c + d*x]) - 2*(-2 + Cos[c + d*x])*Sqrt[1 + Sec[c + d*x]])*Tan[c + d*x])/(2*a*d*(-1 + Sec[c + d*x])*
Sqrt[1 + Sec[c + d*x]]*Sqrt[a - a*Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(260\) vs. \(2(127)=254\).

Time = 29.31 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.79

method result size
default \(-\frac {A \sqrt {2}\, \left (\cos \left (d x +c \right )^{2} \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+5 \sqrt {2}\, \cos \left (d x +c \right ) \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )-\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}\, \cos \left (d x +c \right )+7 \cos \left (d x +c \right ) \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-5 \sqrt {2}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )-2 \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-7 \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )\right ) \csc \left (d x +c \right )}{2 a d \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {-a \left (\sec \left (d x +c \right )-1\right )}}\) \(261\)

[In]

int(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*A/a/d*2^(1/2)*(cos(d*x+c)^2*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+5*2^(1/2)*cos(d*x+c)*arctan((-cos(
d*x+c)/(cos(d*x+c)+1))^(1/2))-(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*cos(d*x+c)+7*cos(d*x+c)*arctan(1/2*2^
(1/2)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-5*2^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-2*2^(1/2)*(-cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)-7*arctan(1/2*2^(1/2)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)))/(-cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)/(-a*(sec(d*x+c)-1))^(1/2)*csc(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 526, normalized size of antiderivative = 3.60 \[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {7 \, \sqrt {2} {\left (A \cos \left (d x + c\right ) - A\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} + {\left (3 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{{\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 10 \, {\left (A \cos \left (d x + c\right ) - A\right )} \sqrt {-a} \log \left (\frac {2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} - {\left (2 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{\sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 4 \, {\left (A \cos \left (d x + c\right )^{3} - A \cos \left (d x + c\right )^{2} - 2 \, A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}}}{4 \, {\left (a^{2} d \cos \left (d x + c\right ) - a^{2} d\right )} \sin \left (d x + c\right )}, \frac {7 \, \sqrt {2} {\left (A \cos \left (d x + c\right ) - A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 10 \, {\left (A \cos \left (d x + c\right ) - A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 2 \, {\left (A \cos \left (d x + c\right )^{3} - A \cos \left (d x + c\right )^{2} - 2 \, A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}}}{2 \, {\left (a^{2} d \cos \left (d x + c\right ) - a^{2} d\right )} \sin \left (d x + c\right )}\right ] \]

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(7*sqrt(2)*(A*cos(d*x + c) - A)*sqrt(-a)*log((2*sqrt(2)*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*sqrt((a
*cos(d*x + c) - a)/cos(d*x + c)) + (3*a*cos(d*x + c) + a)*sin(d*x + c))/((cos(d*x + c) - 1)*sin(d*x + c)))*sin
(d*x + c) + 10*(A*cos(d*x + c) - A)*sqrt(-a)*log((2*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x +
 c) - a)/cos(d*x + c)) - (2*a*cos(d*x + c) + a)*sin(d*x + c))/sin(d*x + c))*sin(d*x + c) + 4*(A*cos(d*x + c)^3
 - A*cos(d*x + c)^2 - 2*A*cos(d*x + c))*sqrt((a*cos(d*x + c) - a)/cos(d*x + c)))/((a^2*d*cos(d*x + c) - a^2*d)
*sin(d*x + c)), 1/2*(7*sqrt(2)*(A*cos(d*x + c) - A)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) - a)/cos(d*x +
 c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) - 10*(A*cos(d*x + c) - A)*sqrt(a)*arctan(sqrt((a*cos(d*
x + c) - a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) - 2*(A*cos(d*x + c)^3 - A*cos(d*x
+ c)^2 - 2*A*cos(d*x + c))*sqrt((a*cos(d*x + c) - a)/cos(d*x + c)))/((a^2*d*cos(d*x + c) - a^2*d)*sin(d*x + c)
)]

Sympy [F]

\[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=A \left (\int \frac {\cos {\left (c + d x \right )}}{- a \sqrt {- a \sec {\left (c + d x \right )} + a} \sec {\left (c + d x \right )} + a \sqrt {- a \sec {\left (c + d x \right )} + a}}\, dx + \int \frac {\cos {\left (c + d x \right )} \sec {\left (c + d x \right )}}{- a \sqrt {- a \sec {\left (c + d x \right )} + a} \sec {\left (c + d x \right )} + a \sqrt {- a \sec {\left (c + d x \right )} + a}}\, dx\right ) \]

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))**(3/2),x)

[Out]

A*(Integral(cos(c + d*x)/(-a*sqrt(-a*sec(c + d*x) + a)*sec(c + d*x) + a*sqrt(-a*sec(c + d*x) + a)), x) + Integ
ral(cos(c + d*x)*sec(c + d*x)/(-a*sqrt(-a*sec(c + d*x) + a)*sec(c + d*x) + a*sqrt(-a*sec(c + d*x) + a)), x))

Maxima [F]

\[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (A \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{{\left (-a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((A*sec(d*x + c) + A)*cos(d*x + c)/(-a*sec(d*x + c) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 1.11 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.21 \[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {7 \, \sqrt {2} A \arctan \left (\frac {\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a}}{\sqrt {a}}\right )}{a^{\frac {3}{2}}} - \frac {10 \, A \arctan \left (\frac {\sqrt {2} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a}}{2 \, \sqrt {a}}\right )}{a^{\frac {3}{2}}} - \frac {3 \, \sqrt {2} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{\frac {3}{2}} A + 4 \, \sqrt {2} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} A a}{{\left ({\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} + 3 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} a + 2 \, a^{2}\right )} a}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/2*(7*sqrt(2)*A*arctan(sqrt(a*tan(1/2*d*x + 1/2*c)^2 - a)/sqrt(a))/a^(3/2) - 10*A*arctan(1/2*sqrt(2)*sqrt(a*t
an(1/2*d*x + 1/2*c)^2 - a)/sqrt(a))/a^(3/2) - (3*sqrt(2)*(a*tan(1/2*d*x + 1/2*c)^2 - a)^(3/2)*A + 4*sqrt(2)*sq
rt(a*tan(1/2*d*x + 1/2*c)^2 - a)*A*a)/(((a*tan(1/2*d*x + 1/2*c)^2 - a)^2 + 3*(a*tan(1/2*d*x + 1/2*c)^2 - a)*a
+ 2*a^2)*a))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{(a-a \sec (c+d x))^{3/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+\frac {A}{\cos \left (c+d\,x\right )}\right )}{{\left (a-\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((cos(c + d*x)*(A + A/cos(c + d*x)))/(a - a/cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)*(A + A/cos(c + d*x)))/(a - a/cos(c + d*x))^(3/2), x)